(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0) → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0) → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0), c)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
foldB(t, s(n)) →+ f(foldB(t, n), B)
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [n / s(n)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(a, b, c), C) → triple(a, b, s(c))
f'(triple(a, b, c), B) → f(triple(a, b, c), A)
f'(triple(a, b, c), A) → f''(foldB(triple(s(a), 0', c), b))
f''(triple(a, b, c)) → foldC(triple(a, b, 0'), c)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
triple/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(b, c), C) → triple(b, s(c))
f'(triple(b, c), B) → f(triple(b, c), A)
f'(triple(b, c), A) → f''(foldB(triple(0', c), b))
f''(triple(b, c)) → foldC(triple(b, 0'), c)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
g(A) → A
g(B) → A
g(B) → B
g(C) → A
g(C) → B
g(C) → C
foldB(t, 0') → t
foldB(t, s(n)) → f(foldB(t, n), B)
foldC(t, 0') → t
foldC(t, s(n)) → f(foldC(t, n), C)
f(t, x) → f'(t, g(x))
f'(triple(b, c), C) → triple(b, s(c))
f'(triple(b, c), B) → f(triple(b, c), A)
f'(triple(b, c), A) → f''(foldB(triple(0', c), b))
f''(triple(b, c)) → foldC(triple(b, 0'), c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
foldB,
f,
foldC,
f',
f''They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(10) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldB, foldC, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(12) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldB, foldC, f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(14) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldB, foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(16) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC, foldB
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0',
0'),
gen_0':s4_0(
n143_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n143
0)
Induction Base:
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldC(triple(0', 0'), gen_0':s4_0(+(n143_0, 1))) →RΩ(1)
f(foldC(triple(0', 0'), gen_0':s4_0(n143_0)), C) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldB, f, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldB(
triple(
0',
0'),
gen_0':s4_0(
n2037_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n2037
0)
Induction Base:
foldB(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldB(triple(0', 0'), gen_0':s4_0(+(n2037_0, 1))) →RΩ(1)
f(foldB(triple(0', 0'), gen_0':s4_0(n2037_0)), B) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), B) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(B)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →RΩ(1)
f''(triple(0', gen_0':s4_0(0))) →RΩ(1)
foldC(triple(0', 0'), gen_0':s4_0(0)) →LΩ(1)
triple(gen_0':s4_0(0), gen_0':s4_0(0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(21) Complex Obligation (BEST)
(22) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f, foldC, f', f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(23) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(24) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f', foldC, f''
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(25) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f'.
(26) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f'', foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(27) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f''.
(28) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
foldC
They will be analysed ascendingly in the following order:
foldB = f
foldB = foldC
foldB = f'
foldB = f''
f = foldC
f = f'
f = f''
foldC = f'
foldC = f''
f' = f''
(29) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
foldC(
triple(
0',
0'),
gen_0':s4_0(
n4050_0)) →
triple(
gen_0':s4_0(
0),
gen_0':s4_0(
0)), rt ∈ Ω(1 + n4050
0)
Induction Base:
foldC(triple(0', 0'), gen_0':s4_0(0)) →RΩ(1)
triple(0', 0')
Induction Step:
foldC(triple(0', 0'), gen_0':s4_0(+(n4050_0, 1))) →RΩ(1)
f(foldC(triple(0', 0'), gen_0':s4_0(n4050_0)), C) →IH
f(triple(gen_0':s4_0(0), gen_0':s4_0(0)), C) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), g(C)) →RΩ(1)
f'(triple(gen_0':s4_0(0), gen_0':s4_0(0)), A) →RΩ(1)
f''(foldB(triple(0', gen_0':s4_0(0)), gen_0':s4_0(0))) →LΩ(1)
f''(triple(gen_0':s4_0(0), gen_0':s4_0(0))) →RΩ(1)
foldC(triple(gen_0':s4_0(0), 0'), gen_0':s4_0(0)) →RΩ(1)
triple(gen_0':s4_0(0), 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(30) Complex Obligation (BEST)
(31) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n4050_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n40500)
(36) BOUNDS(n^1, INF)
(37) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
foldB(triple(0', 0'), gen_0':s4_0(n2037_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n20370)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
(39) BOUNDS(n^1, INF)
(40) Obligation:
TRS:
Rules:
g(
A) →
Ag(
B) →
Ag(
B) →
Bg(
C) →
Ag(
C) →
Bg(
C) →
CfoldB(
t,
0') →
tfoldB(
t,
s(
n)) →
f(
foldB(
t,
n),
B)
foldC(
t,
0') →
tfoldC(
t,
s(
n)) →
f(
foldC(
t,
n),
C)
f(
t,
x) →
f'(
t,
g(
x))
f'(
triple(
b,
c),
C) →
triple(
b,
s(
c))
f'(
triple(
b,
c),
B) →
f(
triple(
b,
c),
A)
f'(
triple(
b,
c),
A) →
f''(
foldB(
triple(
0',
c),
b))
f''(
triple(
b,
c)) →
foldC(
triple(
b,
0'),
c)
Types:
g :: A:B:C → A:B:C
A :: A:B:C
B :: A:B:C
C :: A:B:C
foldB :: triple → 0':s → triple
0' :: 0':s
s :: 0':s → 0':s
f :: triple → A:B:C → triple
foldC :: triple → 0':s → triple
f' :: triple → A:B:C → triple
triple :: 0':s → 0':s → triple
f'' :: triple → triple
hole_A:B:C1_0 :: A:B:C
hole_triple2_0 :: triple
hole_0':s3_0 :: 0':s
gen_0':s4_0 :: Nat → 0':s
Lemmas:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
foldC(triple(0', 0'), gen_0':s4_0(n143_0)) → triple(gen_0':s4_0(0), gen_0':s4_0(0)), rt ∈ Ω(1 + n1430)
(42) BOUNDS(n^1, INF)